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Abstract
Background: Germline mutations in BRCA1/2 significantly contribute to heredi-
tary breast and/or ovarian cancer. Here, we report a novel BRCA2 duplication of 
exons 22–24 in a female patient with bilateral breast cancer at age 35 and 44. The 
duplicated region was initially detected by gene panel sequencing and multiplex li-
gation-dependent probe amplification. However, the location and orientation of the 
duplicated region was unknown. Therefore, it was initially classified as a variant of 
unknown significance.
Methods: The spatial directional characterization of the BRCA2 duplication was 
achieved by targeted enrichment of the whole-genomic BRCA2 locus including 
exons and introns, and subsequent high-throughput sequencing. Subsequently, bio-
informatics tools and a breakpoint-spanning PCR were used for identification of lo-
cation and orientation of the duplication.
Results: The duplicated region was arranged in tandem and direct orientation (Chr13(
GRCh37):g.32951579_32960394dup; NM_000059.3 c.8754 + 651_9256+6112dup 
p.(Ala3088Phefs*3)). It is predicted to result in a frameshift and a premature stop 
codon likely triggering nonsense-mediated mRNA decay. Consequently, it is re-
garded as pathogenic.
Conclusion: This case study demonstrates that a comprehensive characterization of 
a structural variant by breakpoint assessment is crucial for its correct classification. 
Therefore, sequencing strategies including non-coding regions might be necessary to 
identify cancer predispositions in affected families.
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The well-known tumor suppressor genes BRCA1/2 (MIM 
#113705/#600185) are crucial to restore genomic stability 
after DNA double-strand breaks via homologous recombina-
tion. Germline pathogenic variants (PVs) in one of the genes 
significantly increase the lifetime risk to develop hereditary 
breast and/or ovarian cancer (HBOC, MIM #604370). About 
25% of HBOC can be explained by pathogenic BRCA1/2 
variants (Nielsen, van Overeem Hansen, & Sorensen, 2016). 
Most BRCA1/2 PVs described in literature are single-nucle-
otide variants. However, 12.42% of BRCA1 PVs and 4.17% 
of BRCA2 PVs are large genomic rearrangements (LGRs) 
(Lopez-Urrutia et al., 2018). The increased occurrences of 
BRCA1 LGRs compared to BRCA2 is most likely due to its 
higher density of Alu repeat sequences, which are suscepti-
ble to homologous recombination (Woodward, Davis, Silva, 
Kirk, & Leary, 2005). As a consequence, the detection of 
LGRs performed in diagnostics is initially recommended to 
include only BRCA1 and has been extended to BRCA2 in re-
cent years (Engert et al., 2008).

A widely used method to detect LGRs is multiplex li-
gation-dependent probe amplification (MLPA), which has 
been first introduced in 2003. MLPA is a semi-quantitative 
PCR-based technique that can determine the copy numbers 
of different target sequences, simultaneously (Hogervorst 
et al., 2003). Although the technique has been proven to 
be effective and sensitive in the detection of copy number 
variations (Belvini, Salviato, Radossi, & Tagariello, 2017; 
Scaglione et al., 2018), it cannot identify the position or ori-
entation of duplications within the genome (Rost, Loffler, 

Pavlova, Muller, & Oldenburg, 2008). Therefore, conclusive 
characterization regarding the pathogenicity of duplications 
is impossible using solely MLPA. In these cases, additional 
methods are required for the classification of variants. Before 
high-throughput sequencing was accessible, MLPA has 
often been combined with a breakpoint-spanning PCR and 
a Sanger sequencing-based primer walk for the identification 
of the exact breakpoint. Although the method is simple and 
inexpensive, it can be labor-intensive, when the region that 
needs to be covered is large and the orientation is unknown.

Nowadays, high-throughput sequencing is a feasible op-
tion to detect genomic rearrangements (Nunziato et al., 2017). 
However, panel or whole-exome sequencing does not cover 
intronic or intergenic regions of the genome, while whole-ge-
nome sequencing is often not the most cost-effective method. 
Here, we used a targeted enrichment strategy, which allowed 
the high-throughput sequencing of selected regions, includ-
ing exons and introns. We were able to identify a novel tan-
dem duplication of exons 22–24 of BRCA2, which is most 
likely causative for HBOC.

The patient (III:7) (Figure 1) was first diagnosed with an 
invasive ductal carcinoma of the right mammary gland at the 
age of 35 (pT1c (2), N1, G3, estrogen receptor (ER) positive, 
progesterone receptor (PR) negative, and human epidermal 
growth factor receptor 2 (HER2) negative). After perform-
ing right mastectomy, the patient received adjuvant chemo-
therapy (4 × epirubicin/cyclophosphamide, 4 × Taxol), and 
tamoxifen for 3 years. With 44 years of age, she was diag-
nosed with a moderately differentiated invasive mammary 

F I G U R E  1   Family pedigree. Circles: female; squares: male; filled solid: breast cancer; striped: other type of cancer; unfilled: unaffected; red 
outline: BRCA2 duplication carrier; green outline: non-carrier; black outline: not examined. BC, breast cancer; BBC, bilateral breast cancer; BLC, 
bladder cancer; TC, testicular cancer; M, Melanoma; SAR, sarcoma. The numbers below the symbols represent the age of the individual, followed 
by type of cancer and age at cancer onset. The index patient is marked by an arrow
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carcinoma in her left mammary gland (pTX, G2, ER positive, 
PR positive, and HER2 negative).

Within the patient's family, multiple incidences of differ-
ent cancer types appeared, including one other incidence of 
breast cancer (Figure 1). Her maternal first cousin (III:11) 
developed a tubular and papillary mammary gland carci-
noma at the age of 51. Her maternal uncle (II:5) was diag-
nosed with testicular cancer at the age of 65. The patient's 
father (II:3) was diagnosed with bladder cancer at the age 
of 74. His brother had an unidentified primary tumor, most 
likely a melanoma, which metastasized into the brain and the 
neck, where it formed a clearly visible lymph node tumor. 
He died at the age of 63. His son (III:2) died at the age of 28 
as a result of a fibrosarcoma in his thigh diagnosed 3 years 
earlier.

The proband's young age at the initial breast cancer di-
agnosis and the development of bilateral breast cancer be-
fore the age of 50, suggested a genetic predisposition for the 
disease. In 2010, after the second incidence of breast can-
cer, she was first examined in our clinic. Genomic DNA was 
isolated from EDTA blood samples using the QIAamp DNA 
blood Midi kit (Qiagen) and was tested for single-nucleotide 
variants in BRCA1/2 via high-resolution melt (HRM) analy-
sis and denaturing high-performance liquid chromatography 
(DHPLC). Additionally, she was tested for CNVs in BRCA1 
via MLPA (SALSA® MLPA® P002 BRCA1 Kit, MRC-
Holland). No PV was identified.

Since other types of cancer occurred in the family, in-
cluding sarcoma, the patient was tested for Li-Fraumeni 
syndrome (MIM #151623). In approximately 70% of fam-
ilies fulfilling the criteria for classical Li-Fraumeni syn-
drome, a PV in TP53 can be identified (Evans et al., 2002). 
In 2018, screening of TP53 was performed via the TruSight 
Cancer Panel (Illumina). On this occasion, MLPA testing 
for BRCA2 (SALSA® MLPA® P045 BRCA2/CHEK2 Kit, 
MRC-Holland) was also performed, which was implemented 
as a routine screening in our clinic in 2012. Both techniques 
detected a duplication of exons 22–24 of BRCA2, but its loca-
tion and orientation within the genome of the duplicated re-
gion remained unknown. Due to the large introns surrounding 
exon 22 and exon 24, determining the duplication's orienta-
tion and breakpoints using PCR-based sequencing techniques 
would have been labor-intensive and inefficient. Therefore, 
the duplication has initially been classified as a variant of 
unknown significance (VUS), according to the ENIGMA 
classification criteria for BRCA1/2 variants (Version 2.5.1 29 
June 2017).

To further characterize the duplication, the complete 
BRCA2 locus of the patient was amplified via a custom-de-
signed targeted enrichment strategy (Agilent SureSelectQXT) 
and sequenced on a NextSeq 500 (Illumina) according to 
the manufacturer's instructions. Briefly, 50  ng of the pa-
tient's genomic DNA was enzymatically fragmented and 

adaptor-tagged. The DNA fragments of interest hybridized 
to biotin-labeled cRNA baits targeting the genomic loci 
of BRCA1 (Chr17(GRCh37):g.40600254_41756008) and 
BRCA2 (Chr13(GRCh37):g.32414335_33482189), includ-
ing exonic, intronic, and surrounding intergenic regions. 
The cRNA-DNA hybrids were captured using streptavi-
din-coated magnetic beads. After washing and amplification, 
the enriched DNA fragments were submitted to paired-end 
sequencing using a NextSeq 500 Mid Output V2 kit for 
2 × 150 bp paired-end reads (Illumina). A mean coverage of 
422 reads with 99.61% of bases covered by at least 20 reads 
was achieved.

The in silico copy number variation detection tool 
CnvHunter (https​://github.com/imgag/​ngs-bits) confirmed 
the duplication covering exons 22–24 of BRCA2 (Figure 
2). The tool detects duplications and deletions by compar-
ing the coverage profiles of samples (n  =  80) sequenced 
with the same targeted enrichment method. By analyzing 
the reads, we were able to determine the breakpoint and its 
direct tandem orientation. Additionally, a breakpoint-span-
ning PCR was performed, using the following primers 
for validation, 5′-CTCTAGAGTACTGTGAGTGG-3′ 
(Chr13(GRCh37):g.32960177–32960196) and 
5′-GAGACGGAGTTTTGCTCTTG-3′ (Chr13(GRCh3
7):g.32951708–32951727). The breakpoints of the du-
plication were located within the homologous region 
TAAAAATACAAAA: Chr13(GRCh37):g.32951579
_32960394dup (Figure 2). This tandem duplication of 
exon 22–24 (about 8,815  bp; HGVS: NM_000059.3 
c.8754  +  651_9256+6112dup p.(Ala3088Phefs*3)) is pre-
dicted to cause a frameshift and a premature termination 
codon, which is located more than 50 nucleotides upstream 
of the last exon–exon junction. This is known to be critical 
to trigger nonsense-mediated mRNA decay (Lindeboom, 
Supek, & Lehner, 2016). Therefore, we regard this variant to 
be pathogenic.

Considering this classification, the patient's sisters (Figure 
2; III:3, 5 and 9) were tested for the genomic duplication via 
Sanger sequencing. All of them were negative for the BRCA2 
duplication. Unfortunately, additional family members in-
cluding the proband's parents did not consent to genetic test-
ing for the duplication. Therefore, it is unknown whether this 
duplication emerged de novo in the patient. The patient was 
advised to undergo a risk-reducing salpingo-oophorectomy. 
An earlier discovery of the BRCA2 duplication might have 
ultimately resulted in the same therapy, but a bilateral mas-
tectomy would have been offered.

Here, we demonstrate the rapid and accurate identi-
fication of a large genomic rearrangement via a targeted 
high-throughput sequencing approach. With this method, 
we were able to reclassify a variant of unknown significance 
to a pathogenic variant. This highlights the importance of 
thorough characterization of LGRs, such as duplications, by 
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the identification of their location and orientation to deter-
mine their pathogenicity. This might also require targeting 
intronic regions, which are mostly excluded in high-through-
put sequencing panels. In this context, targeted enrichment 
is a powerful and cost-effective tool for complete coverage 
of target regions and the characterization of large genomic 
rearrangements.
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